Problem 3.19

The polar notation presentation of our three vectors is:

$$\vec{A} = (12.8 \text{ m}) \angle 150^{\circ}$$

$$\vec{B} = (3.30 \text{ cm}) \angle 60^{\circ}$$

$$\vec{C} = (22.0 \text{ in}) \angle 215^{\circ}$$

Drawing a quick graph always seems to help visualize the situation. Unfortunately, each vector has different units which means we will have to do each graph separately.

b.)
$$\vec{B} = (3.30 \text{ cm}) \angle 60^{\circ}$$

In this case, all the components are *positive*, so we can write:

$$\vec{B} = (1.65\hat{i} - 2.86\hat{j})$$
cm

1.)

2.)

a.)
$$\vec{A} = (12.8 \text{ m}) \angle 150^{\circ}$$

The only thing that is tricky about using a "convenient triangle" in determining the information you need is that in most cases you will have to put the appropriate sign in *manually*. In this case, the actual x-component is in the *negative* direction, so the solution (in *unit vector notation*) looks like:

$$\vec{A} = (-11.1\hat{i} + 6.40\hat{j})m$$

Again, manually inserting the appropriate signs, we get:

$$\vec{C} = (-18.0\hat{i} - 12.6\hat{j})$$
in

4.)

3.)